Note: This content is accessible to all versions of every browser. However, this browser does not seem to support current Web standards, preventing the display of our site's design details.

  

227-0102-00L
Diskrete Ereignissysteme
(Discrete Event Systems)

Professor(en):
L. Thiele, R. Wattenhofer
Betreuer:
Vorlesung:
Link zum Kurskatalog
Fall 2017
Webseite:
Ziele:
Over the past few decades the rapid evolution of computing, communication, and information technologies has brought about the proliferation of new dynamic systems. A significant part of activity in these systems is governed by operational rules designed by humans. The dynamics of these systems are characterized by asynchronous occurrences of discrete events, some controlled (e.g. hitting a keyboard key, sending a message), some not (e.g. spontaneous failure, packet loss). The mathematical arsenal centered around differential equations that has been employed in systems engineering to model and study processes governed by the laws of nature is often inadequate or inappropriate for discrete event systems. The challenge is to develop new modeling frameworks, analysis techniques, design tools, testing methods, and optimization processes for this new generation of systems. In this lecture we give an introduction to discrete event systems. We start out the course by studying popular models of discrete event systems, such as automata and Petri nets. In the second part of the course we analyze discrete event systems. We first examine discrete event systems from an average-case perspective: we model discrete events as stochastic processes, and then apply Markov chains and queuing theory for an understanding of the typical behavior of a system. In the last part of the course we analyze discrete event systems from a worst-case perspective using the theory of online algorithms and adversarial queuing.
Vorlesungslevel:
D-ITET Master, Systems and Control specialization
Supplementary Core Courses
Voraussetzungen:
Inhalt:
. Introduction 2. Automata and Languages 3. Smarter Automata 4. Specification Models 5. Stochastic Discrete Event Systems 6. Worst-Case Event Systems 7. Network Calculus http://www.vvz.ethz.ch/Vorlesungsverzeichnis/lerneinheitPre.do?lerneinheitId=61054&semkez=2009W&lang=de
Dokumentation:

[bertsekas] Data Networks Dimitri Bersekas, Robert Gallager Prentice Hall, 1991, ISBN: 0132009161 [borodin] Online Computation and Competitive Analysis Allan Borodin, Ran El-Yaniv. Cambridge University Press, 1998 [boudec] Network Calculus J.-Y. Le Boudec, P. Thiran Springer, 2001 [cassandras] Introduction to Discrete Event Systems Christos Cassandras, Stéphane Lafortune. Kluwer Academic Publishers, 1999, ISBN 0-7923-8609-4 [fiat] Online Algorithms: The State of the Art A. Fiat and G. Woeginger [hochbaum] Approximation Algorithms for NP-hard Problems (Chapter 13 by S. Irani, A. Karlin) D. Hochbaum [schickinger] Diskrete Strukturen (Band 2: Wahrscheinlichkeitstheorie und Statistik) T. Schickinger, A. Steger Springer, Berlin, 2001 [sipser] Introduction to the Theory of Computation Michael Sipser. PWS Publishing Company, 1996, ISBN 053494728X



!!! Dieses Dokument stammt aus dem ETH Web-Archiv und wird nicht mehr gepflegt !!!
!!! This document is stored in the ETH Web archive and is no longer maintained !!!