ASYMPTOTIC STABILITY AND THE LYAPUNOV EQUATION FOR TWO-DIMENSIONAL DISCRETE SYSTEMS

P. Agathoklis*, E. I. Jury** and M. Mansour***

*Department of Electrical Engineering, University of Victoria, Victoria, B.C., Canada
**Department of Electrical Engineering, University of Miami, Coral Gables, FL 33124, USA
***Institute of Automatic Control and Industrial Electronics, Swiss Federal Institute of Technology.
E.T.H.-Zentrum, 8092 Zürich, Switzerland

Abstract. The Lyapunov equation for 2-D discrete systems is investigated. In particular, the relationship between asymptotic stability, the zeros of the characteristic polynomial and the 2-D Lyapunov equation is considered. Sufficient conditions for asymptotic stability are presented based on the 2-D Lyapunov equation and the properties of quasidominant matrices.

Keywords. Stability; Lyapunov method; two-dimensional systems; discrete systems.

1 Research for E. I. JURY was supported by the National Science Foundation under Grant E.C.S.8116847.

INTRODUCTION

The recent interest for 2-D digital signal processing has motivated the study of the stability of 2-D discrete systems. Bounded-input bounded-output stability (BIBO stability) has been studied in many publications (see review of Jury, 1978), and since the introduction of 2-D state space models of Roesser (1975) and Kung and co-workers (1977), stability in state space representation has been considered too. Forinashin and Marchesini (1978, 1979a, 1979b, 1980); Lodge and Fahmy (1981); Kames (1978); and Pivarski (1977) have studied the concept of asymptotic stability and the 2-D Lyapunov equation. Generally, the extension of 1-D stability concepts to the 2-D case is associated with difficulties due to the increased complexity of 2-D systems. Goodman (1977) discusses these problems for systems in input output description, and Forinashin and Marchesini (1980) for systems in state space representation.

In this paper the 2-D Lyapunov equation and the relationship between asymptotic stability, zeros of the characteristic polynomial and the Lyapunov equation is considered.

The following 2-D state space model is used in this paper. The local state space is defined as the direct sum of the horizontal and vertical space, denoted by \(x^h \) and \(x^v \) respectively:

\[
\chi^h(i,j) \quad \chi^v(i,j)
\]

and

\[
\chi(i,j) = \begin{bmatrix} \chi^h(i,j) \\ \chi^v(i,j) \end{bmatrix}
\]

where \(\chi(i,j) \in \chi \) is the state and \(\chi^h(i,j) \in \chi^h \), \(\chi^v(i,j) \in \chi^v \) are the horizontal and vertical states respectively. The state space model of a 2-D discrete system is then given (Roesser, 1975; Kung and colleagues, 1977) by:

\[
\begin{bmatrix} x^h(i+1,j) \\ x^v(i,j+1) \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} x^h(i,j) \\ x^v(i,j) \end{bmatrix} + \begin{bmatrix} b_{11} \\ b_{21} \end{bmatrix} u(i,j)
\]

(3)

\[
\chi^h(i,j) = \begin{bmatrix} C_1 \\ C_2 \end{bmatrix} \begin{bmatrix} x^h(i,j) \\ x^v(i,j) \end{bmatrix} = C \chi(i,j)
\]

(4)

where \(u(i,j) \) and \(\chi(i,j) \) are the input and output vectors respectively. Eq. (3) can be rewritten as

\[
\chi(i+1,j+1) = A_1 \chi(i,j) + A_2 \chi(i+1,j) + B_1 u(i+1,j) + B_2 u(i,j+1)
\]

(5)

where

\[
A_1 = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}, \quad A_2 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}
\]

(6)

\[
B_1 = \begin{bmatrix} 0 \\ B_{21} \end{bmatrix}, \quad B_2 = \begin{bmatrix} b_{11} \\ 0 \end{bmatrix}
\]

The characteristic polynomial of the state space model (3) is given by

\[
\det(z - A_1 z A_2)
\]

(7)

and the system described by (3) is asymptotically stable if

\[
\det(z - A_1 z A_2) \neq 0 \text{ in } \tilde{U}
\]

(8)

where \(\tilde{U} \) denotes the closed unit bidisc

\[
\tilde{U} = \{(z_1, z_2) | |z_1| < 1, |z_2| < 1\}
\]

(9)

Asymptotic stability can be tested by testing the zeros of the characteristic polynomial. An alternative method for testing stability is to use the 2-D Lyapunov equation. In the next section the 2-D Lyapunov equation is considered and based on it sufficient conditions for asymptotic stability are derived.
THE 2-D LYAPUNOV EQUATION

A 2-D Lyapunov equation for continuous 2-D systems was first introduced by Plekasinski (1977). However, the necessary condition for stability was not satisfactorily resolved. Lodge & Fahmy extended the continuous 2-D Lyapunov equation to the discrete case and Fornasini & Marchesini (1980) gave an alternative formulation of the discrete 2-D Lyapunov equation. In this section, the discrete 2-D Lyapunov equation is considered and simple sufficient conditions for asymptotic stability are derived for some special cases.

Theorem 1: \(\det(I-z_1A_2-z_2A_1) \neq 0 \) if there exists a block diagonal positive definite matrix \(P \) such that the matrix \(Q \), given by

\[
-Q = \begin{pmatrix} A_1^* & A_2^* \end{pmatrix}^T P \begin{pmatrix} A_1^* & A_2^* \end{pmatrix} - P
\]

\[
= \begin{pmatrix} A_{11} & A_{12} \\ 0 & A_{22} \end{pmatrix} \begin{pmatrix} \begin{bmatrix} P_1 & 0 \\ 0 & P_2 \end{bmatrix} \end{pmatrix} \begin{pmatrix} A_{11} & A_{12} \\ 0 & A_{22} \end{pmatrix} - \begin{pmatrix} P_1 & 0 \\ 0 & P_2 \end{pmatrix}
\]

(10)

is positive definite.

Proof: see Humes (1978).

Theorem 1a: Given \(Q \) positive definite and \(P \) block diagonal such that (10) is satisfied, then \(\det(I-z_1A_2-z_2A_1) \neq 0 \) in \(\mathbb{C}^2 \).

Proof: Sufficiency follows from theorem 1. For necessity we will show that assuming

\[
\det(I-z_1A_2-z_2A_1) \neq 0 \text{ in } \mathbb{C}^2
\]

(11)

and \(Q \) to be positive definite in eq. (10), it follows that the block diagonal matrix \(P \) is positive definite.

From

\[
\begin{bmatrix} 1 & z_2 \end{bmatrix}^T \begin{bmatrix} 1 & -z_1 \\ 0 & 1 \end{bmatrix} z_2 = 0
\]

(12)

we obtain a nontrivial solution

\[
\begin{bmatrix} 1 & z_2 \end{bmatrix}^T \begin{bmatrix} 1 & -z_1 \\ 0 & 1 \end{bmatrix} z_2 = 0
\]

(13)

for some \((z_1, z_2) \neq (0, 0)\), and \(z_{1,1} \) are given by

\[
\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \text{ and } \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}
\]

(14)

Using the 2-D Lyapunov equation (10) we obtain

\[
\begin{align*}
\begin{bmatrix} A_1^* & A_2^* \end{bmatrix}^T P \begin{bmatrix} A_1^* & A_2^* \end{bmatrix} - P = -z_{1,0} Q_0 \\
\begin{bmatrix} z_{2,1} & 1 & 0 \\ 1 & z_{2,1} & 0 \\ 0 & 0 & 1 \end{bmatrix} (P z_{1,1} - z_{1,1} P - z_{1,1} Q) Q_0 = -z_{1,0} Q_0
\end{align*}
\]

(15)

and finally

\[
\begin{align*}
\begin{bmatrix} z_{1,1} & 1 & 0 \\ 1 & z_{1,1} & 0 \\ 0 & 0 & 1 \end{bmatrix} (P z_{2,1} - z_{2,1} P - z_{2,1} Q) Q_0 = 0
\end{align*}
\]

(16)

Due to the fact that \(Q_0 \neq 0 \) it follows that

\[
\det(I-z_1^{2-1}z_{2,1}^{2-1}P(z_1^{2-1}z_{2,1}^{2-1}P + Q)Q_0 = 0
\]

(17)

for some \((z_1, z_2) \neq (0, 0)\).

This can be considered as the characteristic equation of the following pencil (Gantmacher, 1958):

\[
\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} P - \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} P + Q
\]

(18)

where

\[
\lambda = \frac{1}{1 - |z_1|^{-2}}
\]

(19)

From (11) we have that the characteristic polynomial has zeros only outside of \(\mathbb{C}^2 \) and consequently

\[
\det(I-z_1^{2-1}z_{2,1}^{2-1}P(z_1^{2-1}z_{2,1}^{2-1}P + Q)Q_0 = 0
\]

(20)

For \(|z_2| = 1 \) the pencil (18) becomes

\[
\begin{bmatrix} 0 & - \lambda \end{bmatrix} P - \lambda \begin{bmatrix} 0 & - \lambda \end{bmatrix}
\]

(21)

which is a regular pencil due to \(Q > 0 \).

Using the extremal properties of regular pencils (Gantmacher, 1958) we obtain

\[
\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} < \begin{bmatrix} 0 & - \lambda \\ - \lambda & 0 \end{bmatrix} < \lambda \begin{bmatrix} 0 & - \lambda \\ - \lambda & 0 \end{bmatrix}
\]

(22)

for all \(\lambda \in \mathbb{C} \). Using

\[
\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & z_2 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & z_2 \\ 0 & 1 \end{bmatrix}
\]

(23)

we have

\[
\begin{bmatrix} 1 & z_2 \\ 0 & 1 \end{bmatrix} < \begin{bmatrix} 0 & - \lambda \\ - \lambda & 0 \end{bmatrix} < \lambda \begin{bmatrix} 0 & - \lambda \\ - \lambda & 0 \end{bmatrix}
\]

(24)

\(\lambda_1 \) is given by (19) and for \(|z_2| = 1 \) follows from (20) that \(\lambda_1 > 0 \). Therefore (22) gives

\[
0 < \lambda_1 < 1 \quad \text{for all } \lambda \in \mathbb{C}
\]

(25)

Using the fact that \(Q \) is positive definite (25) implies that \(P_1 \) is positive definite too. The proof is completed by showing that \(P_2 \) is positive definite too. This can be carried out using a similar approach for the pencil given by

\[
\begin{bmatrix} 0 & - \lambda \\ - \lambda & 0 \end{bmatrix} < \begin{bmatrix} 1 & z_2 \\ 0 & 1 \end{bmatrix} < \lambda \begin{bmatrix} 0 & - \lambda \\ - \lambda & 0 \end{bmatrix}
\]

(26)

where

\[
\lambda_2 = \frac{1}{1 - |z_2|^{-2}}
\]

(27)

instead of the pencil given by (18).

Theorem 1a assumes the existence of a Q positive definite and \(P \) block diagonal such that (10) is satisfied. It is possible that for a 2-D system described by (3) having a stable characteristic polynomial, no such matrices \(P \) and \(Q \) exist. However, such systems must have a characteristic polynomial which is of higher order than 1 in both variables \(z_1 \) and \(z_2 \). For some system matrices \(A_1 \) and \(A_2 \) algebraic sufficient conditions for asymptotic stability can be given based on theorem 1 and the properties of quasi-dominant matrices (Moylan, 1977).

Theorem 2: A system described by the state space model of the form (3) is asymptotically stable if the following matrix

\[
I - \begin{bmatrix} A_1 & A_2 \end{bmatrix}
\]

has all principle minors positive. \(|A| \) denotes the matrix with elements \(a_{ij} = |a_{ij}| \).

The proof of this theorem follows directly from theorem 2 of Moylan (1977) which implies that there is a diagonal matrix \(P \) which satisfies (10). Therefore,

\[
\det(I-z_1^{2-1}z_{2,1}^{2-1}P(z_1^{2-1}z_{2,1}^{2-1}P + Q)Q_0 = 0
\]

and hence asymptotic stability follows.
Asymptotic Stability and the Lyapunov Equation

The following diagram combines the results of theorem 1 and 2:

\[\text{asympstability} \]

\[\text{1-D Lyapunov} \]

\[\text{equation is} \]

\[\text{satisfied} \]

\[\text{I-} |A_1+A_2| \text{ has} \]

\[\text{all principal} \]

\[\text{minors positive} \]

The 2-D Lyapunov equation is not only useful in testing asymptotic stability but can also be used to investigate the properties of 2-D realizations. Using the 2-D Lyapunov equation, Lodge and Fahmy (1981) have shown that systems described by normal matrices \((A_1^H = A_1)\) have realizations which are free from overflow oscillations. Agathoklis, Jury and Mansour (to appear) show the same for systems described with matrices which satisfy the condition of theorem 2.

EXAMPLES

In this section, two examples are presented to illustrate the use of theorem 1 and 2 in testing stability of systems in state space representation.

Example 1

Consider the system described with the following state space model:

\[
x(n+1,n+1) = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1/2 & 1/2 & 0 \end{bmatrix} x(n+1,n) + \begin{bmatrix} 1/3 & 0 & 1/4 \\ 1/6 & 1/2 & 1/4 \\ 0 & 0 & 0 \end{bmatrix} x(n,n+1)
\]

\[A = A_1 + A_2 = \begin{bmatrix} 1/3 & 0 & 1/4 \\ 1/6 & 1/2 & 1/4 \\ 0 & 0 & 0 \end{bmatrix} \]

We form I-|A|

\[I-|A| = \begin{bmatrix} 2/3 & 0 & -1/4 \\ 1/6 & 1/2 & -1/4 \\ 1/6 & 1/2 & 0 \end{bmatrix} \]

which has clearly all principal minors positive. Using theorem 2, it follows that the system (28) is asymptotically stable. The characteristic polynomial of the system is given by

\[
\det(I-xA_1 - xA_2) = \det \begin{bmatrix} 1/6 x z_1 & 0 & -1/4 x z_1 \\ -1/6 x z_1 & 1/2 z_1 & 1/4 x z_1 \\ -1/4 x z_2 & 1/2 z_2 & 1/2 x z_2 \end{bmatrix} = \]

\[= \frac{1}{12} (2z_1)(3z_1)(2z_1) \]

which has no zeros in \(\mathbb{U}^2 \).

Example 2

Consider the system described by

\[
x(m+1,n+1) = \begin{bmatrix} 0 & 0 & 0 \\ 1/3 & 0 & 1/4 \\ 1/6 & 1/2 & 1/4 \\ 0 & 0 & 0 \end{bmatrix} x(m,n+1) + \begin{bmatrix} 1/6 & 1/2 & 1/4 \\ 1/6 & 1/2 & -1/4 \\ 0 & 0 & 0 \end{bmatrix} x(m,n+1)
\]

\[I-|A_1+A_2| \text{ has no all principal minors positive} \]

In order to determine stability we choose

\[Q = \frac{1}{2} \begin{bmatrix} 368 & 102 & 288 \\ 102 & 405 & 108 \\ 288 & 108 & 648 \end{bmatrix} \]

which give for \(P = \text{diag}(1,1,3) \). In order to obtain the matrices \(P \) and \(Q \), a set of six nonlinear inequalities with three unknowns has to be solved. The diagonal elements of \(P \) are the unknowns and the six conditions result from the condition \(P \) and \(Q \) being positive definite.

\[P \text{ and } Q \text{ satisfy the 2-D Lyapunov equation (10)} \text{, and, therefore, the characteristic polynomial has no zeros in } \mathbb{U}^2. \text{ Indeed} \]

\[\det(I-x_1 A_1 - x_2 A_2) = \frac{1}{6(24)^2} (96+48z_1+32z_1^2+7z_1 z_2) \]

has no zeros in \(\mathbb{U}^2 \).

CONCLUSIONS

The relationship between the zeros of the characteristic polynomial and the 2-D Lyapunov equation is considered. It is shown that based on the properties of quasidiagonal matrices and the 2-D Lyapunov equation sufficient conditions for asymptotic stability can be given.

REFERENCES

