A Short Note on Another Characterization of Prime Numbers

Mohamed Mansour

ETH Zurich

www.control.ethz.ch/info/people/mansour

August 28, 2017

Abstract

In [2] two new related characterizations of prime numbers were introduced. In this note a third characterization is introduced which leads to the same primness criterion as the one obtained from the arithmetic series of composites [1].

keywords: prime numbers

1 Introduction

In [2] two new related characterizations of prime numbers were introduced. In this note a third characterization is introduced which leads to the same primness criterion as the one obtained from the arithmetic series of composites [1].

Sections 2 and 3 shortly discuss the possibility of expressing odd and even composite numbers as sums of neighbouring odd numbers (NONs) and neighbouring even numbers (NEN). Making use of NONs in section 4, a primeness condition is derived, which coincides with the one derived from the arithmetic series of composites [1].

2 Sum of neighbouring odd numbers

The new characterization depends on the sum of NONs. The sum of \(n \) NONs is the square of \(n \) i.e. all the sums of NONs beginning with 1 give all the squares of natural numbers.

\[
1 + 3 + 5 + 7 + 9 + \ldots = 4 + 9 + 16 + 25 + \ldots
\]

Any odd composite number other than the squares is given by the sum of 3, 5, 7, 9, \ldots NONs.

\[
x = n^2 + 2nk \quad k = 0, 1, 2, 3, \ldots \quad (1)
\]

An odd prime number is not a sum of NONs, which is the new characterization of primes.

3 Sum of neighbouring even numbers

Similarly for any even \(n \) NENs the sum \(y \) is even and is given by

\[
y = n^2 + n + 2nk \quad k = 0, 1, 2, 3, \ldots \quad (2)
\]

Equations (1) and (2) with even \(n \) give all the even composites. An even composite is either a sum of NONs or a sum of NENs or both. Only the even number 2 is neither a sum of NONs nor a sum of NENs.

A criterion can be formulated as follows:

Characterization 1. Odd prime numbers cannot be sums of NONs. The even prime 2 is not a sum of either NONs or NENs. All other natural numbers (except 1) are sums of either NONs, NENs or both.
4 Primeness Condition

A sum of NONs can be written as \(a + \cdots + b \). Then

\[
x = \frac{a + b}{2} \times \left[\frac{b - a}{2} + 1 \right].
\]

Let \(c = \frac{a+b}{2} \) and \(k = \frac{a-1}{2} \), then

\[
x = c^2 - 2kc.
\] (3)

Equation (3) is the same as the equation for composites with \(-c\) instead of \(n\). Its solution for \(c\) is given by (4).

\[
c = k + \sqrt{k^2 + x}
\] (4)

Therefore \(k^2 + x\) should be square for \(x\) to be composite (apart from the trivial solution \(k = \frac{a-1}{2}\)).

Conclusions

A new characterization of primes dependent on sums of NONs and NENs is developed. This is a completion of [2].

References
